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MUCAMP: Generating Cyber Campaign Variants via
TTP Synonym Replacement for Group Attribution
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Abstract—As cyberattack operators have progressed to encom-
pass group and nation-state levels, the nature of attacks has
evolved into more sophisticated forms such as cyber campaigns.
In response to these large-scale campaigns, tactical cyber threat
intelligence (CTI) which focuses on tactics, techniques, and proce-
dures (TTPs) has gained significant attention. However, the data-
driven aspects of tactical CTI confront two primary challenges:
(i) the extreme scarcity of campaign data and (ii) the difficulty
of effectively integrating security domain knowledge. To this
end, this paper presents MUCAMP, a novel campaign generation
method that operates in the context of limited campaign data
while also considering the unique characteristics of large-scale
attacks. The proposed method assumes that campaigns are TTP
sequences, and based on this assumption, it generates valid
campaign variants by replacing target TTP words with TTP
synonyms, and preserves the strategic goals of the seed campaigns.
MUCAMP offers a scalable and interpretable augmentation
strategy, enhancing CTI effectiveness under data scarcity and
facilitating rapid adaptation to evolving threat landscapes. We
also prepared a dataset consisting of 858 real-world campaigns la-
beled by security experts, including 14 tactics and 206 techniques,
enabling reliable performance evaluation. Experimental results
demonstrate that each component of MUCAMP contributes to
embedding-based group attribution by improving the separability
of the correct group from alternative candidates, while effectively
reflecting domain knowledge.

Index Terms—Cyber threat intelligence, data augmentation,
MITRE ATT&CK, natural language processing.

I. INTRODUCTION

ALTHOUGH advances in communication and technology
offer many positive contributions to daily life, they also

increase the number of potential attack vectors and exacerbate
the damage caused by cyber threats [2]. These advances
have led to a paradigm shift from traditional cyberattacks to
sophisticated forms of advanced persistent threats (APTs) and
cyber campaigns. These campaigns cause significant negative
impacts, such as financial losses and social disruption, to
achieve the threat actors’ aggressive objectives in the cyber
domain. For example, a notorious cybercrime group called
Lazarus is believed to be responsible for several campaigns,

Manuscript received 29 September 2024; revised 6 May 2025. The pre-
liminary version of this paper has been presented in the Proceedings of the
Korea Institute of Military Science and Technology (KIMST 2023) [1]. This
work was supported by Agency for Defense Development, Republic of Korea
(Corresponding author: Changhee Choi.)

Insup Lee is with the Ministry of National Defense, Seoul 04383, Republic
of Korea (e-mail: insuplee94@gmail.com).

Changhee Choi is with the Department of Cyber Defense, Sejong Univer-
sity, Seoul 05006, Republic of Korea (e-mail: choich@sejong.ac.kr).

Insup Lee and Changhee Choi were formerly with the Agency for Defense
Development, Republic of Korea.

such as the Sony Pictures Hack and the WannaCry ran-
somware [3]. The Sony Pictures Hack leaked sensitive data
(e.g., employees’ personal information and emails) and un-
released copies of Sony movie, causing financial damage.
Meanwhile, the WannaCry ransomware affected hundreds of
thousands of computers in 150 countries, encrypting data and
demanding ransom in Bitcoin.

To proactively defend against and mitigate cyber campaigns,
cyber threat intelligence (CTI) has emerged as one of the
most effective weapons for cyber defenders [4]. CTI refers to
the continuous gathering of knowledge from various intelli-
gence sources to gain a deeper understanding of an attacker’s
intent and context. Several examples of intelligence sources
include low-level raw data such as kernel logs [5]–[10] and
network traffic [11]–[20]. However, to further consider large-
scale attacks such as state-sponsored campaigns, we need to
approach them at a higher, more abstract level and avoid
becoming entrenched in low-level data. From a cyber kill
chain perspective, threat actors in large-scale attacks tend to
have clear objectives, although the specific steps vary. To
address these issues, tactical threat intelligence focuses on
high-level indicators of compromise (IOCs), including tactics,
techniques, and procedures (TTPs). Specifically, MITRE has
presented the ATT&CK® (adversarial tactics, techniques, and
common knowledge) framework [21], a globally accessible
knowledge base of adversary tactics and techniques based on
real-world observations. The ATT&CK affects recent tactical
CTI research [22]–[30] and influences diverse issues, including
real-time detection [22], phishing detection [26], attack graph
construction [29], and group attribution [30]. This paper fo-
cuses on group attribution, which categorizes the attack groups
most likely to have operated a particular cyber campaign.

The most significant factor in ensuring CTI performance is
preparing a sufficient amount of reliable campaign data, as
without data sufficiency, a CTI model can experience over-
fitting and create bias in group attribution results. Note that
large-scale campaigns have fewer frequencies since attackers
need more time to prepare sophisticated operations. Due to
the difficulty of collecting campaign samples, data augmen-
tation can be an effective solution. While there have been
several studies on data augmentation for traditional security
problems [31]–[36], only one study [37] has investigated data
augmentation approaches for cyber campaigns consisting of
TTPs. Although this study [37] has shown promise in terms
of campaign augmentation, several issues still need to be
addressed.

We review the campaign augmentation problem from three
perspectives: (i) campaign data sparsity, (ii) domain knowl-
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Fig. 1. System overview. An attack group launches a large-scale attack in a
scenario consisting of multiple TTPs, alerting the blue team. The blue team
then aims to classify the attack group by using TTP chain embeddings to
identify effective mitigations that counter the campaign for active response.
TTP sequence data augmentation is an effective approach to improve group
attribution, motivating MUCAMP to generate campaign variants via mutation.

edge, and (iii) generation quality. First, cyber campaigns
require a longer preparation time and occur less frequency
than traditional attacks do, making it challenging to prepare
relevant datasets. The nature of data insufficiency in cyber
campaigns hinders the training of deep generative models
in terms of augmenting campaign data. Second, generating
campaigns without considering their characteristics limits the
impact of research. Large-scale attacks such as state-sponsored
attack scenarios have a drastic impact, and obtaining the
related domain knowledge is critical. Lastly, validating the
generated campaigns requires quantitative analysis and domain
knowledge-related aspects. To this end, we have derived the
following three challenges from previous work.

Challenge 1) How can we design a few-shot generative
model with limited campaign data? To address the extreme
sparsity of campaign training data, we need to design a
model that enables generation without overfitting in a few-shot
scenario. Given limited source campaign data, augmentation
via mutation (i.e., changing several parts of the seed data) can
be a practical choice.

Challenge 2) How can we consider domain knowledge
in campaign generation? Traditional studies such as [37]
consider only the machine learning aspect, with the exception
of the security domain. We could reflect on the nature of the
cyber kill chain and large-scale attacks (e.g., the objectives
and length of campaigns) to design the generative model.

Challenge 3) How can we guarantee the quality of the
generated campaign? To ensure validity, we could investigate
the group attribution improvement after campaign augmenta-
tion with varying parameters under security considerations.

In this context, we present MUCAMP, a mutation method for
cyber campaigns represented as TTP sequences that facilitates
few-shot generation while considering the characteristics of
large-scale campaigns. Fig. 1 illustrates a system overview of
MUCAMP in a large-scale attack scenario consisting of four

tactics (Initial Access, Persistence, Exfiltration, and Impact).
Assuming that a blue team identifies the campaign, we aim
to improve the attack group attribution to derive effective
mitigations that correspond to the attack group for active
response. Note that, for large-scale attacks, we focus on
TTPs to approach this problem from a high level, motivating
MUCAMP to address the insufficiency of TTP sequences. The
main contributions of the paper are summarized as follows.

• We propose a few-shot campaign generator, MUCAMP,
which is inspired by a lightweight text augmentation
method in the natural language processing domain. TTP
sequence augmentation via MUCAMP successfully im-
proves group attribution.

• We considered multiple aspects of security when design-
ing MUCAMP, including (i) the consistency of the attack
goals and (ii) the impact of the TTP sequence length,
thus offering advantages relevant to real-world CTI and
cybersecurity scenarios.

• We constructed a reliable campaign dataset in collabora-
tion with security experts to address a realistic campaign
scenario. The experts conducted TTP labeling for the
given security reports, and the TTPs consist of 14 tactics
and 206 techniques.

• We conducted extensive experiments to assess the contri-
bution of each MUCAMP component in terms of enhanc-
ing group attribution, specifically focusing on scenarios
related to the Lazarus group.

The remainder of this paper is organized as follows. In
Section II, we discuss the relevant studies. Section III describes
the data preparation process, and Section IV provides details
about the system and security models. We present the prelim-
inaries and details of MUCAMP in Section V and Section VI,
respectively. In Section VII, we discuss the experimental
results. Section VIII concludes the paper.

II. RELATED WORK

In this section, we review the relevant studies on cyber threat
intelligence (CTI) and the previous efforts to overcome data
insufficiency.

A. Cyber Threat Intelligence

CTI has gained significant attention as a crucial defense
mechanism against sophisticated attacks such as advanced
persistent threats (APTs) and cyber campaigns. CTI employs
a broad range of indicators of compromise (IOCs) [5]–[16]
and increasingly explores the potential of machine learning
and deep learning for more advanced solutions [17]–[20],
[38]–[41]. In particular, we investigate tactical CTI based
on TTPs [22]–[30], explicitly focusing on large-scale attack
scenarios.

CTI data sources. Depending on its purpose, CTI collects
information from various intelligence sources, such as at
the kernel [5]–[10] and network [11]–[20] levels. Zeng et
al. [6] employed a log-based knowledge graph coupled with
semantic embedding to bridge the semantic gap between low-
level and high-level events, namely audit events and systemic
behaviors. This method facilitates the automated clustering
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of semantically similar behaviors, thereby obviating the ne-
cessity for domain-specific expertise. Furthermore, several
studies [8]–[10] have focused on provenance tracking sys-
tems, considering real-time detection [8], soundness in Linux
namespaces [9], and provenance graph modeling with graph
neural networks [10]. Zhao et al. [11] extracted 14 malicious
DNS features to detect APT malware infection. Meanwhile,
Bi et al. [14] focused their attention on APT activities within
the realm of the Industrial Internet of Things (IIoT), and the
authors employed a Stackelberg game model to analyze the
strategic interactions between the adversary and the defender
in the context of APTs in IIoT environments.

Machine learning-based CTI. Recent studies have incor-
porated machine learning techniques to harness information
from diverse intelligence sources and leverage the data-
driven aspects of CTI. Notable approaches include random
forest [17], [18], [20], contrastive learning [38], bidirectional
encoder representations from transformers (BERT) [19], [39],
domain adaptation [40], and reinforcement learning [41]. In
the domain of intrusion detection system (IDS), Do et al. [17],
[18] conducted research involving the extraction of intelligence
from BRO IDS log files, employing a random forest algorithm
to detect APT attacks and command and control (C&C)
servers. Kuehn et al. [39] proposed ThreatCrawl, which not
only contributes to automatic website categorization but also
presents a crawling path for extracting IOCs from documents
via language models, enhancing the effectiveness of CTI
retrieval.

Tactical CTI. In contrast to conventional cyber threats,
modeling large-scale attacks necessitates an elevated analytical
approach that transcends kernel and network level considera-
tions. This demand motivates tactical CTI studies with MITRE
ATT&CK TTPs, e.g., attack automation for red teams [23],
phishing detection [26], ransomware detection [27], and group
attribution [30]. Song et al. [27] suggested analyzing ran-
somware similarity on the basis of the ATT&CK matrix;
this approach involves the application of the term frequency-
inverse document frequency (TF-IDF) when constructing ran-
somware representation vectors, calculating the cosine simi-
larity. Kim et al. [25] explored the potential for predicting
cyber attacks by examining sequences of TTPs in conjunction
with Bayesian networks. Zhang et al. [29] introduced a large
language model-based framework that constructs TTP-tagged
attack graphs from unstructured CTI reports, offering a multi-
layered schema for behavior modeling. On the other hand,
Lee et al. [30] addressed the complexity of group attribution
and demonstrated the possibility of representing attack group
patterns with simple embeddings and group scores. While
group attribution is challenging in large-scale campaigns, it is
a critical issue given the adverse effects associated with these
attacks, and it motivates us to address the attribution problem.

B. Addressing Data Insufficiency

Preparing sufficient high-quality data is essential for achiev-
ing satisfactory performance in data-driven security. There
have been several studies on data augmentation for traditional
security problems [31]–[36], such as API system calls [31],

packets [32], password guessing [34], and CVEs [36]. Shin et
al. [31] utilized sequence generative models such as sequence
to sequence (Seq2Seq) [42] and sequence generative adversar-
ial networks (SeqGAN) [43] to augment anomalies in Linux
system call datasets. The generated sequence of abnormal
system calls improves the performance of host intrusion de-
tection systems. Wang et al. [32] proposed PacketCGAN, a
novel packet generative model based on conditional generative
adversarial networks (CGAN). The authors preprocessed the
input data in packet byte matrix (PBM) format, followed by the
application of PacketCGAN, enhancing traffic classification
with sufficient PBM. However, previous studies on cyber
data augmentation are unsuitable for large-scale scenarios,
and more consideration of higher-level aspects such as TTP
sequences is needed. One study [37] investigated data augmen-
tation for cyber campaigns consisting of TTPs but considered
only machine learning aspects when designing methods and
evaluations, i.e., domain knowledge about large-scale attack
scenarios is needed.

We reviewed previous studies on data augmentation in
terms of security, and this process revealed that the data
insufficiency of tactical CTI needs to be addressed. Since
no work has deep dived into the campaign augmentation
problem, we have designed a campaign generation method
called MUCAMP, whose architecture and mechanisms will be
detailed in Section V.

III. DATASET PREPARATION

This section describes the MITRE ATT&CK and data label-
ing process as preliminaries for preparing a reliable campaign
dataset.

A. MITRE ATT&CK

The MITRE ATT&CK framework [21] provides a compre-
hensive matrix for categorizing the various attack methodolo-
gies that are associated with the cyber kill chain perspective.
It aims to systematically model malicious activities in terms
of tactics, techniques, and procedures (TTPs), enabling an in-
depth investigation of attack patterns. Each version of MITRE
ATT&CK is characterized by its unique set of identifiers and
TTP configurations. Specifically, version 10.1 encompasses
14 tactics (e.g., Initial Access, Lateral Movement, and Im-
pact), 188 techniques (e.g., Process Injection, PowerShell,
and Masquerading), and 379 sub-techniques (e.g., Network
Device Authentication and Vulnerability Scanning). This paper
focuses on version 10.1, acknowledging the variability such
as the number of techniques across the different versions.
Note that emerging cyber threats continuously introduce new
TTPs, as the threat landscape evolves. For instance, the recent
rise of cryptocurrency-related activities and ransomware has
led to the incorporation of ‘T1657’ (Financial Theft) in the
MITRE ATT&CK framework. When the MITRE ATT&CK
framework is updated, the new version typically requires
the re-execution of all TTP-related components, including
(i) campaign generation through mutation and (ii) campaign
embeddings for group attribution. MUCAMP has a distinct
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advantage in these scenarios due to its lightweight architecture,
as will be discussed in Section VI.

Since tactical CTI based on TTPs employs a high-level
approach, its accuracy might be lower than that of CTI
with low-level logs. However, addressing large-scale attacks
requires an abstract approach, as large-scale attackers of-
ten employ varied patterns despite having similar tactical
sequences. Additionally, we rely on the MITRE ATT&CK
framework that is widely used by scholars and organizations
to define the scope of attacks. In experiments, the dataset
was labeled with TTP identifiers such as ‘TA0003.T1556.004’,
where ‘TA0003’ denotes the tactic (Persistence), ‘T1556’ the
technique (Modify Authentication Process), and ‘004’ the sub-
technique (Network Device Authentication).

B. Data Collection

We used 858 security reports from the APT & Cybercrim-
inals Campaign Collection [44] as source data because they
cover real-world cases. Each report in our dataset is mapped
to a unique cyber campaign, providing insights into the attack
group that has conducted the campaign. Although several
methods for automatic TTP labeling of security reports exist,
such as rcATT [45] and TRAM [46], the lack of sufficient
training data can result in skewed distributions during the
labeling process. To mitigate the biases inherent in model-
based labeling due to limited training data, we utilized cy-
bersecurity experts to perform TTP labeling, integrating their
domain expertise with practical knowledge of cybersecurity
incidents. To minimize human errors during expert labeling,
we engaged multiple experts (six) to crosscheck the labeling
results.

Furthermore, these experts considered the context of each
APT attack phase when assigning TTP labels. For instance,
suppose a report mentions ‘Keylogging to capture passwords
otherwise obscured from viewing.’ The technique ‘Keylogging’
is identified as ‘T1056.001’, which is linked to multiple tactics
such as Credential Access (TA0006) and Collection (TA0009).
Considering the context of data collection, the experts labeled
it ‘TA0009.T1056.001.’ Similarly, each security report com-
prises a sequence of TTPs. We assume that a sequence of
tagged TTPs represents a cyber campaign; thus, we focus on
these sequence data in our experiments.

IV. SYSTEM MODEL AND SECURITY MODEL

To clarify the scope of the problem, we describe the
system and security models considered in this work. The
system model outlines the preliminaries to understand group
attribution, while the security model describes the considered
attack scenarios, providing the details for each attack step.
According to the system and security models, we make two
key assumptions: (i) cyber campaigns are represented as
sequences of TTPs, and (ii) our analysis specifically targets
group attribution scenarios associated with the Lazarus group.

A. System Model

Among the various topics in tactical CTI, we focus on
group attribution as defined in Camp2Vec [30], which enables
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Fig. 3. Distribution of TTP lengths in the campaign. During preprocessing,
we set the minimum TTP length to 5.

lightweight statistics-based embedding and group detection.
Compared with traditional deep learning-based approaches,
this group attribution may exhibit a relatively low performance
due to its simplicity. However, given that the extreme sparsity
of campaign data prevents the utilization of deep learning,
attribution via Camp2Vec can be a reasonable alternative. As
shown in Fig. 2, group attribution consists of three steps: (i)
TTP sequence preprocessing, (ii) campaign embedding with
the TF-IDF, and (iii) attribution via a group score that is based
on cosine similarity.

1) Preprocessing: Considering that practical solutions,
such as Kibana from the ELK Stack, provide MITRE
ATT&CK-relevant information, we assume that the input to
group attribution has the form of a TTP sequence. The prepro-
cessing for a given TTP sequence includes three phases. First,
we filtered the input based on a minimum length criterion,
which is defined as the number of TTPs in the input. Fig. 3
shows the length distribution for 858 campaigns, indicating
that the number of campaigns per TTP length tends to increase
up to a length of 4 and then decreases. We therefore set a
minimum length of 5 after considering data sufficiency and
campaign pattern retention. Second, we reordered the input
TTPs according to the tactic orders defined in ATT&CK,
aligning with the cyber kill chain model. This reordering is
necessary as the original TTP sequence itself does not reflect
the actual attack process since its order originates from the
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TABLE I
TECHNIQUE SEQUENCE AFTER PREPROCESSING.

Type TTP Sequence

Raw
TA0001.T1566.002 → TA0005.T1070.003 → TA0002.T1204.002 → TA0003.T1547.001 →
TA0008.T1021.002 → TA0011.T1071.001

Preprocessed T1566 → T1204 → T1547 → T1070 → T1021 → T1071

contents of security reports. Third, we excluded tactics and
sub-techniques to retain only the techniques from the TTPs,
reducing the number of TTP categories and focusing on the
most crucial features. An example of a preprocessed TTP
sequence with a length of 6 is presented in Table I.

2) Cyber campaign embedding: While campaign embed-
ding is not limited to a specific algorithm, we considered
the term frequency-inverse document frequency (TF-IDF) as
used in Camp2Vec [30]. Despite the simplicity of TF-IDF, the
study demonstrated the possibility of campaign embedding by
considering the relationship between a document and words
to be similar to that between a campaign and techniques. The
tf and idf in Camp2Vec are defined as follows:

tf(t, c) = log [1 + freq(t, c)] , (1)

idf(t) = log [(1 + n)/(1 + df(t))] , (2)

where t represents the technique, c denotes the campaign,
freq(t, c) is the frequency of the technique in the campaign,
n is the total number of campaigns, and df(t) represents the
number of campaigns in the campaign set that contain the
technique. A higher TF-IDF value indicates a technique that
is frequent in certain campaigns but less common in others,
thus emphasizing its importance.

3) Group attribution: According to the group attribution
presented in [30], we inferred the group similarities from the
campaign similarities. The campaign similarity is calculated
as follows:

similarity(x, y) = cos(θ) =
x · y
∥x∥∥y∥

, (3)

where x and y represent the embedded campaign vectors. The
set of attack groups is expressed as:

G = {G1, G2, · · · , Gm} , (4)

where m is the number of groups, and each Gi has varying
numbers of campaigns. We define group attribution as the
process of determining the most likely attack group that
has operated the input campaign. This attribution involves
calculating a group score by averaging the similarities between
the input campaign and past campaigns of each group. The
group score for group Gi is defined as:

scorei =
1

Ni

Ni∑
n=1

similarity(vecinput, vecn), (5)

where Ni is the number of campaigns in Gi. The attack group
with the highest score for the input campaign is attributed
to be the threat actor. Note that successful group attribution
provides valuable insights into the attack group, including key

targets, employed tools, and tactical patterns. For instance,
if the attribution points to Lazarus, we should consider that
Lazarus frequently targets high-value industries, such as fi-
nancial institutions, cryptocurrency exchanges, and the energy
sector. The group typically employs tools such as Mimikatz
and Cobalt Strike, and utilizes tactics related to credential theft
and data exfiltration; this enhancement in group attribution
plays a crucial role when preparing appropriate mitigations.

B. Security Model

This study focuses on large-scale attacks with malicious
intent (e.g., exfiltration to the target system), the details of
which are presented in Section VI. Since we assume a system
model based on group attribution, we need to prepare the test
campaign scenario to evaluate group score-based attribution.
Considering that preparing a high-quality scenario is costly,
we chose the most significant group as the scenario operator
by using two criteria: (i) the number of conducted campaigns
and (ii) the negative social impact caused by that group. As
a result, we chose Lazarus as the target group because it has
conducted many campaigns, including the Sony Pictures Hack
and WannaCry ransomware, which have caused extensive
international damage.

We hired offensive security researchers (red team) to design
a realistic Lazarus-style scenario drawing inspiration from a
security report [47]. In this scenario, the threat actor utilizes
document malware called ThreatNeedle to compromise indus-
tries. The attack begins with spear-phishing emails containing
COVID-19 information for initial access. Upon gaining entry,
the attacker deploys a remote access trojan (RAT) to establish
persistence and facilitate lateral movement across Windows
servers. The RAT activates the SSH protocol on the victim’s
system and gathers data, leading to data exfiltration. This
scenario is characterized by two principal aspects: (i) the
simplicity of testing and detection, and (ii) compatibility with
X86 operating systems. During the experiment, our red team
performed a penetration test following this scenario, and we
utilized Elastic Kibana to supply a sequence of TTPs for the
campaign scenario, enabling us to assess the group attribution
performance after campaign generation.

V. TTP DATA AUGMENTATION WITH EDA

Before explaining the architecture of MUCAMP in detail,
we describe the TTP data augmentation method proposed in
[37]. To the best of our knowledge, the research [37] is the
only study with the aims of generating campaign data. As
shown in Fig. 4, the authors preprocessed the input features
of the CTI reports via tokenization, cleaning, and stemming
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(tokenization, cleaning, and stemming) are used to conduct preprocessing for
sentence representation. To improve the classification performance, oversam-
pling (e.g., EDA consisting of four augmentation methods) after sentence
vectorization can be an effective solution.

techniques. After preprocessing, they produced sentence vec-
tors via embedding and then employed easy data augmentation
(EDA) [48] to augment the vectors, improving the sentence
classification performance. EDA is a representative text aug-
mentation method that uses four sub-methods to transform
the original sample: random insertion (RI), random deletion
(RD), random swap (RS), and synonym replacement (SR). RI
selects words (excluding stop words) within a sentence and
inserts them at randomly selected positions, whereas RD re-
moves random words with a specific probability. RS randomly
chooses two words in a sentence and swaps their positions, and
SR replaces certain words with synonyms, where the main
challenge is to define synonym. Despite its simplicity, EDA
improves text classification performance especially on small
datasets [48], which enables a few-shot generation approach.

Although previous work [37] has demonstrated the possi-
bility of TTP augmentation with EDA, this study has several
limitations, particularly in terms of its inadequate considera-
tion of the characteristics of large-scale campaigns. First, cyber
campaigns are not isolated security events but are methodically
orchestrated as long-term operations often aimed at achieving
specific objectives. This characteristic necessitates understand-
ing the underlying objectives of these attacks, ensuring that
their fundamental tactical goal is preserved during the data
augmentation process. Second, applying the four existing EDA
methods requires more consideration of each method’s dis-
tinct properties in terms of their relevant domain knowledge.
For example, RD can inadvertently eliminate crucial TTP
information, thereby obscuring the patterns of attack groups.
Furthermore, the length of TTPs in a campaign can signify the
unique characteristics of a group, making it a crucial factor.
These challenges motivate our research in terms of developing
a more sophisticated method for campaign generation, which is
firmly rooted in a comprehensive understanding of campaign-
specific knowledge.

VI. MUCAMP DESIGN

This paper proposes MUCAMP, a lightweight but effective
campaign variant generation method that considers security
domain knowledge. In this section, we describe (i) the design

goals, (ii) the MUCAMP process, and (iii) the improved group
attribution after data enhancement with MUCAMP.

A. Design Goals

MUCAMP aims to achieve three design goals: (i) few-shot
generation, (ii) domain knowledge reflection, and (iii) the
generation of high-quality campaigns. We briefly summarize
our approach to achieving each design goal with the MUCAMP
components.

• Few-shot campaign generation. The simple but effective
few-shot generation approach is to leverage text augmen-
tation within the domain of natural language processing
(NLP), recognizing that a campaign (i.e., the TTP se-
quence) can be conceptualized as a form of sequence
data. Specifically, we introduce a campaign mutation
technique that involves substituting TTP words with their
synonyms. We define a TTP synonym for a specific
technique as an alternative technique that falls within the
same tactical category. Since MUCAMP uses lightweight
augmentation strategies without neural networks, it is
capable of operating with standard CPU resources, thus
avoiding the need for high-performance GPUs. In Sec-
tion VII-E, we will evaluate the feasibility of MUCAMP
to demonstrate its suitability for low-complexity environ-
ments, even in scaled-up scenarios.

• Design with domain knowledge. Unlike traditional secu-
rity threats, large-scale attacks have a clear objective (i.e.,
goal tactic) that develops as part of a long-term process.
The goal tactics therefore need to remain unchanged
during mutation to guarantee consistent objectives. In
addition, the length of the TTP sequence may be a crucial
component, considering that the long sequence satisfies
the entire process of the cyber kill chain. In Section VII-C
and Section VII-D, we also analyze the importance of the
TTP sequence length.

• Validity of the generated campaign. Ensuring the qual-
ity of generated campaigns is necessary but challenging
due to their complexity. We therefore prepare a reliable
campaign dataset for experiments by employing expert-
based labeling. Then, based on the dataset, we quantify
the improvement in group attribution [30]. Furthermore,
we investigate the impacts of the parameters, such as the
mutation level (Section VII-A) and generation amount per
seed (Section VII-B), on group attribution.

While we anticipate that the group attribution will improve
after data augmentation, this is not our sole objective. Instead,
our primary focus involves generating valid mutated cam-
paigns while considering diverse security aspects. The detailed
campaign mutation process is described in the following
sections.

B. MUCAMP Architecture

As shown in Fig. 5, MUCAMP architecture consists of two
phases: (i) seed selection and (ii) campaign mutation. Upon
receiving an input TTP sequence in the format defined in
Section III-A, MUCAMP generates campaign variants, each
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Fig. 5. MUCAMP architecture. The primary elements of MUCAMP comprise seed selection and campaign mutation. During seed selection, upon identifying
a target group for augmented campaigns, MUCAMP selects seed campaigns based on two criteria: (i) the presence of the goal tactic and (ii) the length of
the TTP sequence. Subsequently, during campaign mutation, MUCAMP identifies specific positions within the seed campaigns for mutation and substitutes
them with corresponding TTP synonyms. This step ensures the validity of the mutated campaigns, maintaining the goal tactic’s consistency throughout the
mutation process. The figure to the right illustrates an example of a TTP synonym replacement, where TA0003.T1556 (Modify Authentication Process) is
replaced with TA0003.T1543 (Create or Modify System Process).

bearing the same label as the seed campaign. This section
describes the core components of MUCAMP, emphasizing the
security considerations.

1) Group selection: Because MUCAMP focuses on attack
group attribution as its system model, mutated campaigns are
tagged with identical group information to seed campaigns,
e.g., Lazarus, MenuPass, and Ajax Security. In other words,
MUCAMP aims to augment campaign data by mutating the
target group’s seed campaigns. Thus, the first step in MU-
CAMP is to decide which groups to handle. While MUCAMP
can generate campaign variants for any attack group, we focus
on the Lazarus variants, as described in Section IV-B.

2) Seed campaign selection: After selecting the target
group, MUCAMP selects seed campaigns for mutation. The
two criteria for the seed campaign are (i) the inclusion of
goal tactics and (ii) the length of the TTP sequence. First, the
most crucial information related to the campaign is attackers’
intent since we are considering large-scale attacks. Upon
examining the 14 tactics outlined by MITRE ATT&CK [49],
we identify three tactics as goal tactics: Collection (TA0009),
Exfiltration (TA0010), and Impact (TA0040). The rationale
behind the selection of goal tactics lies in their pivotal roles
in facilitating attackers’ objectives via information gathering
(Collection), network-based data stealing (Exfiltration), and
system disruption (Impact). We assume that these three goal-
oriented tactics should remain consistent even during mutation
when considering campaigns in which at least one of the
target tactics is a seed candidate. Second, after selecting
the campaigns with these goal tactics, we select those with
lengthy TTP sequences as the seed campaigns. Since this work
assumes that cyber campaigns have the form of a sequence,
the length of the campaign indicates the combination of each
attack phase. In other words, a lengthy sequence tends to
follow a continuous and sophisticated attack process that is
conceptualized by the cyber kill chain. Conversely, abbreviated
TTP sequences might obscure identifiable patterns of attack
groups, which motivated us to consider the TTP sequence
length as a significant factor.

3) Mutated position selection: After seed selection, we
decide which TTP position in the seed campaign to mutate.
First, we exclude TTPs for goal tactics from mutated positions
to guarantee the goal consistency of the MUCAMP. Selecting

a TTP location based on a specific metric causes deterministic
campaign generation given a seed campaign. To ensure gen-
eration diversity, we randomize the modified TTP locations,
except for the goal tactics’ locations. We then need to consider
how many locations to mutate (i.e., the mutation level) because
drastic changes will break the attack group characteristics
held by the seed campaign. In contrast, minor changes limit
generation diversity, leading to campaign reproduction rather
than mutation. We investigate the impact of the mutation level
in Section VII-A.

4) TTP synonym replacement: The next step is to modify
the selected TTP of the seed campaigns. Motivated by a pre-
vious study [48], we use EDA, which specifically focuses on
synonym replacement. We excluded random swaps, insertions,
and deletions for the following reasons.

• Random swap (RS). As cyber campaigns have become
increasingly sophisticated, even identical attack groups
adopt various tactics from a cyber kill chain perspective.
We excluded RS to add TTP modifications for our
campaign generation and to reflect the practical attack
group rather than simply sorting or swapping existing
campaigns.

• Random insertion (RI). We can augment TTP sequences
by adding random TTPs to the original campaign data.
However, RI is not suitable when considering goal tactic
consistency, as we want the tactics intended by the orig-
inal seed campaign (a key concept in cyber kill chains)
to remain unchanged.

• Random deletion (RD). Removing randomly selected
TTPs has consequences that are similar to those incurred
by the use of RI. Deleting a few words in the traditional
NLP domain does not significantly damage the meaning
since sentences are generally sufficiently long; however,
RD for campaign data can significantly contaminate the
intent or other characteristics, considering that 32.98% of
our data have a TTP length of less than 5.

Therefore, we focus on synonym replacement to generate
TTP sequences by mutating selected TTP positions. Note that
while diversity in generated data is one of the primary consid-
erations, excessive variation can compromise the validity of
the generated sequences. Considering the appropriate level of
diversity in the definition of a TTP synonym, we applied two
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criteria: (i) maintaining validity in alignment with cyber kill
chain principles and (ii) achieving sufficient diversity through
random selection while ensuring a reasonable level of validity.
The MITRE ATT&CK framework categorizes techniques that
correspond to similar phases of an attack into the same tactic
within the cyber kill chain, thereby establishing connections
between the techniques that fall under the same tactic. In
MUCAMP, the TTP synonym is defined as a technique that is
randomly selected from the corresponding tactic. Note that the
degree of similarity between techniques can vary, even within
the same tactic. For instance, in the case of the Persistence
(TA0003) tactic, the Account Manipulation (TA0003.T1098)
and Create Account (TA0003.T1136) techniques may share
more similarities with each other than with the Traffic Sig-
naling (TA0003.T1205) technique. However, incorporating the
TTP similarity into synonym replacement could excessively
constrain generation diversity, as it would result in a fixed
synonym for each technique, thereby reducing the variability
necessary for robust data generation. In addition to diversity,
we investigate the impact of the generation quantity, denoted
by Nm, on effective group attribution in Section VII-C.

5) Validity check: The final step involves checking the
validity of the generated TTP sequences, ensuring that the
fundamental nature of the original campaigns remains consis-
tent throughout the mutation process. Since we align cyber
campaigns with cyber kill chains and MITRE ATT&CK, we
assume that the nature of these campaigns depends on the
objectives represented by three goal tactics. By excluding
goal tactics from the candidates of the mutated positions, the
ultimate objectives of the campaigns are preserved even after
TTP synonym replacement. The reason for each goal tactic in
the context of real-world campaign objectives is as follows.

• Collection (TA0009). One of the key objectives of large-
scale campaigns is the acquisition of sensitive informa-
tion, such as intellectual property, personal data, or con-
fidential documents. In real-world campaigns, attackers
often employ automated tools to continuously gather data
over extended periods.

• Exfiltration (TA0010). This tactic is especially critical in
the final stages of data theft scenarios. To achieve Exfil-
tration as a goal tactic, large-scale campaigns frequently
utilize sophisticated methods designed to evade detection,
such as encrypted channels or disguising malicious traffic
as legitimate communication.

• Impact (TA0040). We commonly observe this tactic
in destructive cyber campaigns, which aim to execute
malware attacks or deploy ransomware. This tactic seeks
not only to steal data but also to cause damage, undermine
trust, or apply pressure on targeted organizations or
governments.

If MUCAMP operates as anticipated, mutated campaigns
will always meet the criteria of the validity check, given
its pre-consideration during the mutated position selection
phase. After campaign generation, the attack group attribution
is enhanced by data augmentation as described in the next
subsection.

Algorithm 1: Data-Augmented Group Attribution
Input: Source campaign Xsrc; Scenario data XSCN;

Minimum TTP length lmin; Mutation level α; Seed
selection ratio β; Number of mutations per seed Nm.

Output: Expected group y∗.
1: /* Step 1: Dataset Preparation */
2: Conduct TTP Tagging and prepare Xsrc.
3: Preprocess Xsrc with lmin.
4: Mutated campaigns Xmut ← []
5: /* Step 2: Campaign Generation by MUCAMP */
6: G← SelectGroup(Xsrc)
7: Cseed ← SelectSeedCampaign(Xsrc, G, β)
8: for i = 1 to Nm do
9: passvalidity ← False

10: while passvalidity == False do
11: p← SelectMutatedPosition(Cseed, α)
12: Cmut ← ReplaceSynonym(p)
13: if GoalTactic(Cmut) == GoalTactic(Cseed) then
14: passvalidity ← True
15: Append Cmut to Xmut.
16: end if
17: end while
18: end for
19: /* Step 3: Attack Group Attribution */
20: Vectorizer ← Train(Camp2Vec, Xsrc)
21: Xaug ← Xsrc +Xmut
22: cX , cSCN ← Embedding(Vectorizer, Xaug, XSCN)
23: y∗ ← GroupAttribution(cX , cSCN).

C. Data-Augmented Group Attribution

MUCAMP defines the output format of generated campaigns
as a TTP sequence rather than as the campaign vectors
suggested in [37]. TTP sequence generation allows us to
pursue data-augmented group attribution independently of the
embedding method, although we use Camp2Vec [30] as a
reference. We assume that data-augmented group attribution
consists of three steps: (i) dataset preparation, (ii) cam-
paign generation via MUCAMP, and (iii) group attribution
via campaign vectors. Algorithm 1 illustrates an example
pseudocode for data-augmented group attribution. Initially, we
collect and preprocess the original campaign data as described
in Section III and Section IV, including source campaign
Xsrc and scenario campaign XSCN. Subsequently, we generate
campaign variants via MUCAMP in a process that involves
four steps: group selection, seed campaign selection, mutated
position selection, and TTP synonym replacement. Then, we
conduct a validity check to guarantee that the defined goal
tactics of seed campaigns remain consistent. The final stage
encompasses embedding-based attack group attribution. After
training Camp2Vec [30] with the original campaigns Xsrc
(excluding the generated data), we apply the trained vectorizer
to both the augmented campaigns and the scenario campaign.
Given the campaign vectors, we next execute group attribution
by identifying the group with the highest group score [30].

To provide an intuitive understanding of how campaign
mutation aids in attack group attribution, we visualize the
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embedded campaign vectors on a two-dimensional plane.
As shown in Fig. 6(a) and Fig. 6(b), we use t-distributed
stochastic neighbor embedding (t-SNE) with 1000 iterations
for dimensionality reduction. The displayed 634 dots indicate
the original campaign data filtered with a minimum TTP
length of 5, and the crosses represent mutated campaigns.
We generate campaign variants via MUCAMP by setting the
parameters α (mutation level) to 0.5, β (seed selection ratio)
to 0.2, and Nm (number of mutations per seed) to 10. As
shown in Fig. 6(a), the distribution of the embedded vectors
does not exhibit a distinct pattern. This lack of clarity is
due to the increasing sophistication of attack groups and
the advancement of their campaigns. However, as shown in
Fig. 6(b), mutated campaigns tend to cluster and form specific
patterns. These observations suggest that MUCAMP has the
potential to enhance embedding-based attack group attribution.
In the following section, we describe a quantitative analysis
that was conducted by using various parameters to further
explore this potential.

VII. PERFORMANCE EVALUATION

We prepared a dataset consisting of 858 campaigns, labeled
by security experts as described in Section III. After prepro-
cessing, we used 634 campaigns from 341 attack groups as
our base data. Note that few attack groups performed multiple
campaigns; 265 attack groups performed only one campaign in
the dataset. To focus on the groups with multiple campaigns,
we list the top 10 attack groups based on the number of
campaigns as shown in Fig. 7. The group includes well-known
adversaries such as Lazarus, APT28, and Deep Panda, which
operated 38, 23, and 8 campaigns, respectively. In addition to
the 634 campaigns, we also prepare test data with one real-
world scenario from Lazarus as described in Section IV-B.
Since our scenario data are constructed to reflect a diverse
range of attack patterns and TTPs, the resulting TTP sequence
has a length of 24.

In terms of attack group attribution, we analyzed three
phases: (i) fitting Camp2Vec with the 634 campaigns, (ii)
embedding the campaigns of the top-10 attack groups and the
target scenario (Lazarus), and (iii) measuring the group scores
among the embedded campaigns. To implement MUCAMP,
we set the mutation level α to 0.2, the generation amount Nm

to 10, and the seed campaign selection ratio β to 0.2 (i.e.,
the number of seed campaigns Ns is 7 out of 38 Lazarus
campaigns). Consequently, the total number of augmented
campaign variants is Ns ×Nm = 7× 10 = 70.

To compare performance, we analyzed the group scores
calculated for the target scenario (Section. IV-B). Instead of
comparing with other generation methods in CTI, we used
MUCAMP with varying parameters as our baseline for several
key reasons. While a state-of-the-art study on TTP augmen-
tation [37] exists, its implementation details lack sufficient
reproducibility and focus on vectorized TTPs rather than raw
TTP sequences. We also excluded traditional augmentation
methods such as SMOTE [50] from our baselines, as SMOTE
is designed to balance categories, which diverges significantly
from real-world cybersecurity scenarios. Since our objective
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Fig. 6. Visualization with t-SNE on the embedded campaign vectors of the
(a) original (without augmentation) and (b) MUCAMP-augmented campaigns.
After data augmentation, mutated campaigns (blue crosses) are generated near
the seed campaigns.

is to integrate domain-specific knowledge into TTP aug-
mentation, we emphasize a comprehensive investigation of
MUCAMP with diverse parameters.

A. Effect of Mutation Level

We investigated how the mutation level α affects the group
attribution, since the mutation level may affect the quality and
validity of the generated data. Compared with other domains
such as NLP, TTP sequences typically have short lengths, with
those of 64.57% ( 554858 ) of the data being less than 10. When
we set a minimum TTP length of 5, using an α value under
0.2 might result in no mutation. In the experiments, we chose
α values ranging from 0.2 to 0.7 with an interval of 0.1.

As shown in Table II, we first present the group scores
without campaign augmentation. The results indicate that the
attack group attribution is successful for the Lazarus scenario,
achieving the highest score of 0.1662 for the correct attribu-
tion. However, the score gap between Lazarus and the other

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3578233

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea University. Downloaded on June 10,2025 at 00:31:55 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. X, XXXX 2025 10

TABLE II
GROUP SCORE BETWEEN THE LAZARUS SCENARIO AND THE SELECTED ATTACK GROUPS.

Attack Group
Lazarus APT28 Turla APT32 Sandworm MuddyWater APT29 G-3390 menuPass Deep Panda

0.1662 0.1302 0.1155 0.1115 0.1053 0.1058 0.0716 0.1015 0.0952 0.0698
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Fig. 7. Number of campaigns for the top-10 attack groups in our dataset. We
focus on Lazarus as the targeted attack scenario group considering the impact
and number of campaigns.

groups suggests room for improvement, considering that the
second-highest group score is 0.1302 for APT28. Introducing
valid data augmentation would increase the score gap between
the correct group (Lazarus) and the other groups. Fig. 8 shows
the tendency of the group scores for Lazarus, which were
augmented with MUCAMP for different α values. Since we
only generated the Lazarus campaigns and the augmented
data were used for testing (not training), note that the scores
for the other groups are consistent after augmentation and
are the same as those in Table II. As shown in Fig. 8, data
augmentation with an α of 0.2 increases the group score from
0.1662 to 0.2120. Notably, the score gap between Lazarus
and APT28 increases by 127.2%, i.e., from 0.036 (0.1662 -
0.1302) to 0.0818 (0.2120 - 0.1302). However, the group score
decreases as α increases, e.g., when α changes from 0.2 to 0.7,
the score diminishes from 0.2120 to 0.1603. This decrease
at higher α values is attributed to the distortion of the seed
campaign’s pattern, i.e., the unique characteristics of the attack
group.

Note that a low α value results in only minor mutations
from the original seed campaigns, leading to low generation
diversity. This low diversity may achieve higher generation
quality, assuming that seed campaigns are appropriately se-
lected. Conversely, a high α value results in greater generation
diversity, increasing the likelihood of mistakenly associating
generated campaigns with the original seed campaigns. For
instance, using an α of 0.7 lowers the group score from
0.1662 to 0.1603, demonstrating that data augmentation alone
does not guarantee performance improvement. To ensure the
validity and quality of the generated data, balancing this trade-
off by selecting an appropriate α value is crucial.
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Fig. 8. Group score for Lazarus according to the mutation level α.
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Fig. 9. Group score for Lazarus according to the campaign generation amount
per seed Nm.

B. Effect of Generation Amount per Seed

We suppose that if we can generate high-quality campaign
data, the improvements in group attribution will likely be
proportional to the generation amount. Specifically, the total
generation amount is influenced by two primary factors: (i)
the generation amount per seed Nm and (ii) the number of
selected seed campaigns Ns. To examine the impact of Nm

on the overall performance, we fixed Ns at 7 and varied Nm

from 1 to 1024, doubling the value at each step. For instance,
an Nm value of 4 implies a total generation amount of 28
(7× 4).

Fig. 9 illustrates that the group score progressively increases
with increasing Nm. However, this performance enhancement
does not continue indefinitely and tends to plateau beyond a
certain threshold. Nonetheless, the impact of Nm is particu-
larly significant when limited data are available. For example,
with an Nm of 64, the augmented dataset size becomes
448, i.e., the total number of campaigns associated with
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Fig. 10. Group score for Lazarus according to the seed selection ratio β. The
number of seed campaigns Ns is calculated by multiplying β and the number
of Lazarus campaigns (38).

Lazarus expands from 38 to 486 (38 + 448). This campaign
data augmentation substantially enhances the group score by
57.34%, i.e., improving from 0.1662 to 0.2615.

C. Effect of Seed Selection Ratio

In addition to Nm, an alternative approach to increasing the
generation amount involves increasing the number of selected
seed campaigns Ns. The value of Ns is derived by multiplying
the seed selection ratio β by 38, which represents the number
of original campaigns from the Lazarus group. Remember
that we selected seed campaigns according to two criteria: (i)
the inclusion of goal tactics and (ii) the length of the TTP
sequence. A higher Ns involves incorporating shorter TTP
sequences that might contain less comprehensive information
about the target group, potentially affecting the attribution
performance. In our experiments, we fixed Nm at 4 and varied
β from 0.05 to 0.5 with an interval of 0.05.

As shown in Fig. 10, the group score improves to a β of
0.2, after which it begins to decrease. Specifically, the group
score reaches 0.2120 when β is set to 0.2 and decreases to
0.1729 with a β of 0.5. This decline in score with higher
β suggests that the seed campaign, in such cases, captures
limited characteristics of the target group. In other words,
due to overly broad seed selection, a higher β value causes
mutations in the seed campaigns that differ significantly from
the original Lazarus campaigns. Nevertheless, we observe a
gradual improvement in scores at lower β values (ranging
from 0.05 to 0.2), where the advantages of data augmentation
outweigh the score reduction caused by increasing β. In our
experiments, a β of 0.2 yields the best performance, effectively
balancing the trade-off.

D. Effect of Seed Selection Algorithm

We validated a seed selection algorithm for MUCAMP that
prioritizes the length of the TTP sequence. We compared this
algorithm against a randomized selection method, present-
ing group scores for different Nm (ranging from 4 to 128,
increasing in multiples of 2). We deliberately excluded the
baseline of the opposite algorithm (seed selection by the short
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Fig. 11. Group score for Lazarus with different seed selection algorithms
according to the campaign generation amount per seed Nm.

sequence) due to its tendency to generate excessive redundancy
in campaign data.

As illustrated in Table II and Fig. 11, both the MUCAMP
and random selection algorithms demonstrate an improvement
in group scores across all Nm. Specifically, the scores in-
crease from 0.1662 (without augmentation) to 0.2120 (with
MUCAMP) and 0.1827 (with random selection). Note that the
performance gap between the selection algorithms becomes
apparent as Nm increases. This gap increases from 0.0293
(0.2120 - 0.1827) to 0.0664 (0.2642 - 0.1978) when Nm

increases from 4 to 128. As discussed in Section VII-A, we
have observed that the validity of the generated campaigns
correlates with an improvement in scores proportionate to the
increase in Nm. This observation suggests that the MUCAMP
seed selection algorithm contributes to generating reasonable
campaign data.

E. Feasibility Analysis

To further investigate the feasibility and complexity of MU-
CAMP, we measured the generation time required to produce
the TTP sequences for the Lazarus group. We varied three
key parameters that affect the generation time: α (mutation
level), β (seed selection ratio), and Nm (generation amount per
seed). Given that there are 38 distinct campaigns associated
with Lazarus, a β value of 0.2 implies the selection of
approximately 7 seeds (0.2 × 38). The total generation amount
is calculated by multiplying Nm and the number of seeds. For
example, with β = 0.2 (i.e., the number of seeds is 7) and
Nm = 128, the resulting total generation amount is 896.

As illustrated in Table III, the generation time remains be-
low one second across all of the experimental cases. This result
underscores that MUCAMP is a computationally lightweight
generation method, excluding the use of neural networks in
its architecture. Cases (1)∼(4) present scenarios wherein the
generation amount per seed, Nm, varies from 128 to 1024.
The generation time linearly increases with respect to Nm,
ranging from 0.0231 seconds to 0.1804 seconds. This linearity
is intuitive considering that the total generation amount scales
proportionally with Nm. In cases (4) and (5), although we
doubled the seed selection ratio β (from 0.2 to 0.4), the
generation time exhibits a modest increase of only 37.98%
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TABLE III
FEASIBILITY ANALYSIS

Case α β Nm
Number of Generation

Seeds Amount Time (Secs)

(1) 0.2 0.2 128 7 896 0.0231
(2) 0.2 0.2 256 7 1,792 0.0446
(3) 0.2 0.2 512 7 3,584 0.0875
(4) 0.2 0.2 1,024 7 7,168 0.1804
(5) 0.2 0.4 1,024 15 15,360 0.2489
(6) 0.4 0.4 1,024 15 15,360 0.4844

(from 0.1804 seconds to 0.2489 seconds). The reason for
this relatively small increase is that a higher seed selection
ratio incorporates shorter TTP sequences and seed campaigns,
which subsequently demand fewer mutations and a reduced
generation time. Furthermore, cases (5) and (6) show that the
mutation level α linearly affects the generation time, increas-
ing from 0.2489 seconds to 0.4844 seconds as α increases.

We have observed that MUCAMP has low computational
complexity, requiring less than one second of processing time
on a single CPU (Intel Xeon Gold 5215, 2.5 GHz, 10 Cores)
to generate over 15,000 campaigns. Note that the number of
original campaigns for Lazarus is limited to only 38, which is
significantly smaller than the number of generated campaigns.
This observation demonstrates the scalability and efficiency of
MUCAMP, indicating that the computational complexity can
be effectively managed by adjusting the generation parameters.

VIII. CONCLUSION

In this paper, we have presented MUCAMP, which improves
attack group attribution in tactical CTI via campaign data aug-
mentation. We introduced TTP synonym replacement to imple-
ment valid campaign variant generation when there is limited
campaign data, effectively capturing the distinct characteristics
of campaign operators, especially the consistency of their
goal tactics. Experimental results on expert-labeled datasets
revealed that each component of MUCAMP contributes to
improving the embedding-based group attribution. MUCAMP
exhibited low computational complexity, facilitating seamless
adaptation to newly updated MITRE ATT&CK versions and
the integration of emerging TTPs. In future work, we plan to
explore its applicability to other attack groups beyond Lazarus
and evaluate adaptive mutation strategies based on campaign
complexity.
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